Notation

Throughout:
® We work over a field k with vector spaces.

® Spectral sequences will be cohomologically indexed.

NS

E7;zq)+r,qfr+1

(arrows on page r go r right and r — 1 down)

® Homology and cohomology are indicated with lowercase h.



Definitions

A k-vector space H* is graded if H* & @ H™ where H" is a
neN

vector space.

A graded vector space H* is a graded algebra if there is a

product ¢ : H? @, HY — HPT4 for all p and ¢q. The product

must be associative. We write ¢(a,b) as a - b.

Algebras will often have a unit.

A vector space E°°® is bigraded if E*® = @ EP? where

(p,q) ENXN
EP? is a vector space.

A bigraded vector space E®® is a bigraded algebra if there is
an associative product ¢ : E™" @, E™® — E™TTS for all
m,n,r,s. Write ¢(a,b) =a-b.



Example

For an example of a bigraded algebra, take (A*, ) and (B*,1))
to be graded algebras with products. Let EPY = AP @ BY and
observe that the following gives a product on EP?:

EMM@E®=AP@ BT A" ® B®
id T (-®-)®id AP @ A" © BT ® B°

POV pptr o gats
_ pptrat
— pptrats

where T'(b ® a) = (—1)de8adeeby @ p,



Definitions

® A graded algebra (H*,-) is a differential graded algebra if
there exists a degree 1 linear map d : H* — H* such that

d(a-b) =d(a)-b+ (=1)%8% . d(b).

® Such a d is called a derivation.

® A bigraded algebra (E°®®,-) is a differential bigraded algebra
if there exists a derivation

d: @ E"—» P E”

pFHq=n r+s=n+1

such that
d(a-b) =d(a)-b+ (—1)""a - d(b)

for all @ € EPY and b € EP'.



Example
For an example of a differential bigraded algebra, take two dif-
ferential graded algebras (A*,-,d4) and (B*,-,dp). Let
E** = A*® B*

and let the differential dg on E*®® be

dp(a® B) = da(e) ® B+ (~1)*%a @ d(B).
Then one can check that
dp(a@B-y7®0) =dg(a®f) - y®5+ (-1)""a® - ds(y®9)

fora®pBe B, vo6c EPY.



Definitions

® A spectral sequence {E?®,d,} is a spectral sequence of algebras if for
each r, (E®®, ¢r,dr) is a differential bigraded algebra and the product ¢,41
on E2%, is induced by the product ¢, of E2® on homology. In other words,
@r+1 is the composition

h(sar

B2, @ By, = h(ES®) @ h(ES®) = h(ES® ® B2*) 2 h(E2%) = E22,.

® Given a filtration Fil* of a graded algebra (H*, ¢), the filtration is stable
with respect to ¢ if

O(Fil"H* ® Fil° H*) C Fil"tSH*.

® A spectral sequence of algebras {E2®,d,} converges to H* as a graded
algebra if there is a stable filtration on H* for which E$? is isomorphic as a
bigraded algebra to the associated bigraded algebra

* P
GT‘p(H ) Fll /F'le+1H*



Example

Suppose E3° is given as an algebra by

EQ.. = Q[x7yaz]/($2 _ y4 _ 22 _ 0)

where degz = (7,1), degy = (3,0), degz = (0,2), da(z)
and d3(z) = y.

=3,



Example

Suppose E3° is given as an algebra by

EQ.. = Q[x7yaz]/($2 _ y4 _ 22 _ 0)

where degw = (7’ 1)7 degy = (3)0)7 degz = (07 2)5 d?(x) = y37
and d3(z) = y.

We will see that the spectral sequence collapses at E4 and zy
survives to F, even though z and y do not.



Example

First we draw page 2 (focusing only on generators of the algebra)

L] L] L] L] L] L] (] L] L] L] L] L] L]
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Example

First we draw page 2 (focusing only on generators of the algebra)
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Example

First we draw page 2 (focusing only on generators of the algebra)

. . . . . . . . . . . . .
° . . . . . Zx . . zxy . L4 ZJFZ/Z
\
z . . 2y . . zy2 . . zg/3 . . . .
. . . . . (] T . . Ty . . Ty2
\

1 y y Y
Since dy above takes basis elements to basis elements, it is an
isomorphism of vector spaces. Thus homology vanishes there,
and page FEj3 is as follows:



Here is page 3:

° [
° [
z ° [
. [

Example

L] L] L] L]
zxy . o zay?
L] L] L] L]
Ty . . xy?




Example

Here is page 3:




Example

Here is page 3:

(] L] L] L] L] L] (] L] L] L] L] (] L]
L] L] L] L] L] L] (] L] . zZxyY . L] ZTy2
z . . zy . . 2y? . . . . \ .
. . . \ . . . . Ty . . zy?
y vy

Once again, d3 takes basis elements to basis elements, hence is
an isomorphism. We can now draw page Fjy:



Here is page 4:

Example

Ty . .




Example

Here is page 4:

] . . . 3 ] . . . . . ] .
] . . . . ] . . . . . [ °
. . ° . . zy2 [ . . . . . .
. . . . . . . ° . xy . L] °

There are no nonzero differentials at this stage. Thus the spectral
sequence has abutted at page 4 to the infinite page. We can
observe here that indeed, zy survived, but x and y did not.



Definitions

® If (I'*, ¢) is a graded algebra, then a graded vector space H* is a I'*-module if the
module scalar multiplication

m:T"QH" - H*

respects the multiplication of I'*; i.e.,
I ®@T* @ H* d@m s ® H*
cp®idl J/m
M @H" ——— H”
commutes.

® IfI'* is a graded algebra and E®® is a bigraded vector space, then I'* acts vertically
on E®® if for all n > 0, E™® is a I'*-module. In other words, there is a scalar
multiplication map

mp :T* @ E™® — E™®
for each n. It is called vertical since

my T @ BE™ o g™t



Example

For an example of a I'* acting vertically on E*®, consider a filtered
graded vector space/I™*-module, call it H*. Suppose further that
the I'*-action is filtration preserving; i.e.,

I'"® FilPH* — FilPH".

One can check that I'* acts vertically on the associated graded
vector space

* P H*



Definitions

e A graded algebra I'* acts on a spectral sequence
(E**.d,} if
(1) '™ acts on Er*® for each r,
(2) d, is T"*-linear for each r, and
(3) the I'*-action on Epf, is induced through homology
from the action of I'* on E}°.

® A spectral sequence {E?®,d,} converges to H* as a
I*-module if
(1) Ep®* = H*,
(2) T'* acts on H*, and
(3) the filtration F'il* on H* induces a I'*-action on
GrP(H*) = FilpH*/FZ-lpHH* that is isomorphic to the
I™-action on E3S.



Example

Suppose I'* = Q[a, b] with dega = 2, degb = 5. Suppose there is
a spectral sequence with E3°® such that

e (5% is a I"™-module,

¢ its [™*-module generators are {x,y, z, w} with degx = (8,4),
degy = (6,0), deg z = (0,4), degw = (10,1), and

e except for that bx = 0, I'* acts freely on this basis.



Example

Suppose I'* = Q[a, b] with dega = 2, degb = 5. Suppose there is
a spectral sequence with E3°® such that

e (5% is a I"™-module,

¢ its [™*-module generators are {x,y, z, w} with degx = (8,4),
degy = (6,0), deg z = (0,4), degw = (10,1), and

e except for that bx = 0, I'* acts freely on this basis.

We will see that the spectral sequence collapses at Fs.



Example

Before drawing page 2, note that it is enough to show that d, =0
on basis elements for all r > 2, since d,, commute with the I'*-
action. We now draw page 2:



Example
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Example

b‘z . . L] . . bazy . . o atw o
a’z e . . . e a“y e a“x e baw e
. . . . e bay e . o aPw e
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. L] L] L] . . L] L L] w .
Yy
The generator z survives to Eo since degz = (0,4) and d,(z) must have total degree 5, but

ES3* is trivial there.



Example

b‘z . . L] . . bazy . . o atw o
a’z e . . . e a“y e a“x e baw e
. . . . e bay e . o aPw e
az e . . . e a’y e axr e bw e
. . . ] o by e . o a’w o
z . L] L] L] L] azy L] x L] . .
L] L] L] L] L] L] L] L] L] aw L]
. L] L] L] L] ay L] L] L] L] .
. L] L] L] . . L] L L] w .
Yy
The generator z survives to Fo since degz = (0,4) and d,(z) must have total degree 5, but

E3* is trivial there.
The generator y survives to Eoo since no I'*-multiple of z hits y with any d,, and y cannot
bound any other element.



Example
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The generator z survives to Fo since degz = (0,4) and d,(z) must have total degree 5, but

E3* is trivial there.

The generator y survives to Eoo since no I'*-multiple of z hits y with any d,, and y cannot
bound any other element. .

This argument doesn’t work for w, since d4(a2y) = w.
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Yy
The generator z survives to Fo since degz = (0,4) and d,(z) must have total degree 5, but

E3* is trivial there.

The generator y survives to Eoo since no I'*-multiple of z hits y with any d,, and y cannot
bound any other element.

This argument doesn’t work for w, since d4(a2y) = w. But differentials commute with the
action, so dg (azy) = a2d4 (y) = 0. Thus, w survives, since it cannot be hit by any I'*-multiple
of z or y.
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bz e . L] . . bazy . . o atw o
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. . . . e bay e . o aPw e
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. L] L] L] . . L] L L] w .
Yy
The generator z survives to Fo since degz = (0,4) and d,(z) must have total degree 5, but

E3* is trivial there.

The generator y survives to Eoo since no I'*-multiple of z hits y with any d,, and y cannot
bound any other element.

This argument doesn’t work for w, since d4(a2y) = w. But differentials commute with the
action, so dg (azy) = a2d4 (y) = 0. Thus, w survives, since it cannot be hit by any I'*-multiple
of z or y.

Finally, da(z) = aw.
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bz e . L] . . bazy . . o atw o
a;z . . . . e a“y e a“x e baw e
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The generator z survives to Fo since degz = (0,4) and d,(z) must have total degree 5, but

E3* is trivial there.

The generator y survives to Eoo since no I'*-multiple of z hits y with any d,, and y cannot
bound any other element.

This argument doesn’t work for w, since d4(a2y) = w. But differentials commute with the
action, so dg (azy) = a2d4 (y) = 0. Thus, w survives, since it cannot be hit by any I'*-multiple
of z or y.

Finally, d2(z) = aw. We reach a contradiction by realizing 0 = d2(0) = da(bz) = bda(z) =
baw # 0, so do(z) = 0.



Example

bz e . L] . . bazy . . o atw o
a;z . . . . e a“y e a“x e baw e
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Yy
The generator z survives to Fo since degz = (0,4) and d,(z) must have total degree 5, but

E3* is trivial there.

The generator y survives to Eoo since no I'*-multiple of z hits y with any d,, and y cannot
bound any other element.

This argument doesn’t work for w, since d4(a2y) = w. But differentials commute with the
action, so dg (azy) = a2d4 (y) = 0. Thus, w survives, since it cannot be hit by any I'*-multiple
of z or y.

Finally, d2(z) = aw. We reach a contradiction by realizing 0 = d2(0) = da(bz) = bda(z) =
baw # 0, so do(z) = 0. dr(z) = 0 for r > 2 since arrows will go down and right and increase
total degree by 1, missing any other nonzero terms. Hence z survives to E; too.



Definition

® A graded algebra (H*,-) is graded commutative
(skew-commutative) if

zoy=(-1My-x

for x € HP and y € HY.



Example

Let k = Q and (A*,-), (B*,-) be free graded skew-commutative

algebras. We show that there are only two possibilities for A*

and B*. If x9, generates A* and deg xa, = 2n, then observe
I'an . xZnE _ (_1)k-2n~€-2nm2n€ . $2nk — -T2né . I’an.

Hence we have honest commutativity, and A* = Qza,], the poly-

nomial algebra on one generator of dimension 2n.

On the other hand, if x9,11 generates B* with deg xo,+1 = 2n+1,

then

(2n+1)(2n+1)

Tont1 - Tant1 = (—1) Ton+1 * Tangl = —T2n+1 ° L2n+1,

we have (x2n+1)2 = (l‘2n+1)22 = 0. Call B* = A(CEQnJrl), the
exterior algebra on one generator of dimension 2n + 1.



Example

Suppose there is a spectral sequence of algebras {E®®,d,} such
that E3®* = V*®@ W™ as bigraded algebras, where V* and W* are
graded algebras, and E3® = H™ as a graded algebra.

Suppose further that H* = Q (where Q as a graded algebra is
H°=Q, H>" =0).

We claim if V* = Q[xa,], then W* = A(x2,-1) (and vice versa,
if V* = A(xony1), then W* = Q[za,)).



Example

Let V* = Q[za,]. We show W* = A(zop41).
Recall that d,(v ® w) satisfies the Leibniz rule; i.e.,

dr(v @ w) = dr(v) @ w + (~1)%E" @ dy (w).

Also note that d,|,. = 0 and d,|. has image in V* @ W*. If
dr(1®w) =3 v; ® wj, then observe that via the Leibniz rule,

d-1ouw*) =k (Z v ® (ijk_1)> .



Example

‘We will build a page of the spectral sequence using the fact that we know our spectral sequence
converges to Q to show that W* 2 A(zg,41).




Example

‘We will build a page of the spectral sequence using the fact that we know our spectral sequence
converges to Q to show that W* 2 A(zg,41).




Example
‘We will build a page of the spectral sequence using the fact that we know our spectral sequence
converges to Q to show that W* 2 A(zg,41).

Top—1 . . . 3 . . . . 3

L] L] L] L] L]

L] L] L] L] L]

L] L] L] L] L]
1 won?

Since za,, does not survive to Eo, there exists x9,,_1 € W™ such that do, (1Qx2, 1) = T2, 1.



Example

‘We will build a page of the spectral sequence using the fact that we know our spectral sequence
converges to Q to show that W* 2 A(zg,41).

T L] L] L] L] L] L] L] L] L]
Top—1 . o Ty @Top—1 o (221)2 @ zan_1®
L] L] L] L] L]
L] L] L] L]
L] L] L] L] L]

1 zon?

Since za,, does not survive to Eo, there exists x9,,_1 € W™ such that do, (1Qx2, 1) = T2, 1.
The existence of xo,, 1 generates new elements on page 2: (xzn,)e ® Top—1-



Example

‘We will build a page of the spectral sequence using the fact that we know our spectral sequence
converges to Q to show that W* 2 A(zg,41).

T L] L] L] L] L] L] L] L] L]
Ton—1 . o Ty @Top—1 o (221)2 @ zan_1®
L] L] L] L] L]
L] L] L] L]
L] L] L] L] L]

1 zon?

Since za,, does not survive to Eo, there exists x9,,_1 € W™ such that do, (1Qx2, 1) = T2, 1.

The existence of x2,,_1 generates new elements on page 2: (xgn)e ® Top—1-
Since dg, —1 is a differential, hence derivation,

dop—1((220)" ® T2n-1) = dan—1((z20)™) ® T2n—1 + (220)™ © doy—1(w2n—1)

mdag_1(w20)(220)™ ) ® T2n_1 + (220)" T ® 1
mtl g

(z2n)



Example

‘We will build a page of the spectral sequence using the fact that we know our spectral sequence
converges to Q to show that W* 2 A(zg,41).

Ton—1 4 ® Iop @Top_—1 @

Since za,, does not survive to Eog, there exists 9,1 € W™ such that dao, (1®Qz2, 1) = 2, ®1

The existence of xo,, 1 generates new elements on page 2: (xgn)e ® Top_—1-
Since dg, —1 is a differential, hence derivation,

dop—1((z2n)" ® T2-1)

don—1((x20)™) @ Tan_1 + (z20)™ ® dan_1(T2n—_1)

mdag_1(w20)(220)™ ) ® T2n_1 + (220)" T ® 1
(z2n)" T ® 1.

Hence the arrows above.



Example

‘We will build a page of the spectral sequence using the fact that we know our spectral sequence
converges to Q to show that W* 2 A(zg,41).

Ton—1 4 ® Iop @Top_—1 @

Since za,, does not survive to Eo, there exists x9,,_1 € W™ such that do, (1Qx2, 1) = T2, 1.

The existence of xo,, 1 generates new elements on page 2: (xgn)e ® Top_—1-
Since dg, —1 is a differential, hence derivation,

dop—1((z2n)" ® T2-1)

don—1((x20)™) @ Tan_1 + (z20)™ ® dan_1(T2n—_1)

mdag_1(w20)(220)™ ) ® T2n_1 + (220)" T ® 1
(z2n)" T ® 1.

Hence the arrows above.

Finally, observe that if W™ had any other elements, they would give rise to classes that would
persist to Eo, contradicting that H* = Q. Hence W™ = A(z3, _1), as desired.



Example

Suppose there is a spectral sequence of algebras {E?®,d,} such
that £3®* = V*®@ W™ as bigraded algebras, where V* and W™ are
graded algebras, and E3®* = H™ as a graded algebra.

Suppose further that H* = Q.

We claim if V* = Q[z2] (2)? then W* = A(z1) ® Qlz].



Example

Another proof by building page 2. We start with




Example

Another proof by building page 2. We start with
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First, we need A(z1) in W* such
that dQ((El) = x3.



Example

Another proof by building page 2. We start with
First, we need A(z1) in W* such

. . . . . that dQ((El) = z2.
We get the following elements

L] L] L] L] L]
and maps.

L] L] L] L] L]

L] L] L] L] L]

L] L] L] L] L]

L] L] L] L] L]

L] L] L] L] L]

L] L] L] L] L]

x1 . T2 ® x1 o (22)’®@z1 o




Example

Another proof by building page 2. We start with
First, we need A(z1) in W* such

. . . . . that dz(zl) = z2.

We get the following elements
L] L] L[] L] L]

and maps.
. . . . . We need to take care of

(z2)? ® x1. It cannot map to

anything, so we need an element

R . . . . to map to it. Since (z2)? ® x1
has total degree 5, we need

* * ° ® * z € W* with degree 4 such that
\ . . . . d4(Z) = (1‘2)2 Qx1.

dy
. \ . .
96‘1 \d'2 T2 ® 21 ;2 (z2)? @21 o
1 -y o (23)2 ——



Example

Another proof by building page 2. We start with

z1 @z e 0z1®z e (22)°Rr1 Q2
—

da Tda

dy

-
osz(X)z ° (12)2®Z

First, we need A(z1) in W* such
that dz(zl) = x3.

We get the following elements
and maps.

We need to take care of

(z2)? ® 1. It cannot map to
anything, so we need an element
to map to it. Since (z2)? ® x1
has total degree 5, we need

z € W* with degree 4 such that
d4(Z) = (1‘2)2 R xq.

We get the following elements
and maps.



Example

Another proof by building page 2. We start with

=

L] L]

2 L] L]
\ .
dyg

1 R 2z o 2Rz =z
—

da

. T2 @ 2
\ .

dy

L] L]

. T2 @ T
\dz 2 1

N

o (22)° Q@21 ® 2
—dy
o " (22)?®=

First, we need A(z1) in W* such
that dz(zl) = x3.

We get the following elements
and maps.

We need to take care of

(z2)? ® 1. It cannot map to
anything, so we need an element
to map to it. Since (z2)? ® x1
has total degree 5, we need

z € W* with degree 4 such that
d4(Z) = (1‘2)2 R xq.

We get the following elements
and maps.

Observe via computation that
d1 (377) = (22)? ® (21 ®@ 2).



Example

Another proof by building page 2. We start with

=

. .
2 . xo ®z2

. .

dg

1 R 2z o 2Rz =z
—

da Tda gy

. To ® 2 . (12)2®z
\d . ° °

4

L] L] L] L]

3 T2 @ 1 o (22)?°®@m
T da

-y o (22)°

o (22)2®22

o (22)° Q@21 ® 2

First, we need A(z1) in W* such
that dz(zl) = x3.

We get the following elements
and maps.

We need to take care of

(z2)? ® 1. It cannot map to
anything, so we need an element
to map to it. Since (z2)? ® x1
has total degree 5, we need

z € W* with degree 4 such that
d4(Z) = (1‘2)2 R xq.

We get the following elements
and maps.

Observe via computation that
dy (32) = (22)? ® (21 ®@ 2).
The pattern continues.



