Notation

Throughout:

- We work over a field k with vector spaces.
- Spectral sequences will be cohomologically indexed.

(arrows on page r go r right and r - 1 down)

• Homology and cohomology are indicated with lowercase h.

Definitions

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- A k-vector space H^{*} is graded if H^{*} ≃ ⊕ Hⁿ where Hⁿ is a vector space.
- A graded vector space H^* is a **graded algebra** if there is a product $\varphi : H^p \otimes_k H^q \to H^{p+q}$ for all p and q. The product must be associative. We write $\varphi(a, b)$ as $a \cdot b$.
- Algebras will often have a unit.
- A vector space $E^{\bullet \bullet}$ is **bigraded** if $E^{\bullet \bullet} \cong \bigoplus_{(p,q) \in \mathbf{N} \times \mathbf{N}} E^{pq}$ where

 E^{pq} is a vector space.

• A bigraded vector space $E^{\bullet\bullet}$ is a **bigraded algebra** if there is an associative product $\varphi : E^{mn} \otimes_k E^{rs} \to E^{m+r,n+s}$ for all m, n, r, s. Write $\varphi(a, b) = a \cdot b$.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

For an example of a bigraded algebra, take (A^*, φ) and (B^*, ψ) to be graded algebras with products. Let $E^{pq} = A^p \otimes B^q$ and observe that the following gives a product on E^{pq} :

$$E^{pq} \otimes E^{rs} = A^p \otimes B^q \otimes A^r \otimes B^s$$
$$\xrightarrow{\mathrm{id} \otimes T(\cdot \otimes \cdot) \otimes \mathrm{id}} A^p \otimes A^r \otimes B^q \otimes B^s$$
$$\xrightarrow{\varphi \otimes \psi} A^{p+r} \otimes B^{q+s}$$
$$= E^{p+r,q+s},$$

where $T(b \otimes a) = (-1)^{\deg a \deg b} a \otimes b$.

Definitions

• A graded algebra (H^*, \cdot) is a **differential graded algebra** if there exists a degree 1 linear map $d: H^* \to H^*$ such that

$$d(a \cdot b) = d(a) \cdot b + (-1)^{\deg a} a \cdot d(b).$$

- Such a *d* is called a **derivation**.
- A bigraded algebra $(E^{\bullet \bullet}, \cdot)$ is a differential bigraded algebra if there exists a derivation

$$d: \bigoplus_{p+q=n} E^{pq} \to \bigoplus_{r+s=n+1} E^{rs}$$

such that

$$d(a \cdot b) = d(a) \cdot b + (-1)^{p+q} a \cdot d(b)$$

for all $a \in E^{pq}$ and $b \in E^{p'q'}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

うして ふゆ とう かんし とう うくしゃ

For an example of a differential bigraded algebra, take two differential graded algebras (A^*, \cdot, d_A) and (B^*, \cdot, d_B) . Let

$$E^{\bullet\bullet} = A^* \otimes B^*$$

and let the differential d_E on $E^{\bullet \bullet}$ be

$$d_E(\alpha \otimes \beta) = d_A(\alpha) \otimes \beta + (-1)^{\deg \alpha} \alpha \otimes d_B(\beta).$$

Then one can check that

 $d_E(\alpha \otimes \beta \cdot \gamma \otimes \delta) = d_E(\alpha \otimes \beta) \cdot \gamma \otimes \delta + (-1)^{p+q} \alpha \otimes \beta \cdot d_E(\gamma \otimes \delta)$ for $\alpha \otimes \beta \in E^{pq}$, $\gamma \otimes \delta \in E^{p'q'}$.

Definitions

イロト (日下 (日下 (日下)))

A spectral sequence {E_r[•], d_r} is a spectral sequence of algebras if for each r, (E_r[•], φ_r, d_r) is a differential bigraded algebra and the product φ_{r+1} on E_{r+1}[•] is induced by the product φ_r of E_r[•] on homology. In other words, φ_{r+1} is the composition

$$E_{r+1}^{\bullet\bullet} \otimes E_{r+1}^{\bullet\bullet} = h(E_r^{\bullet\bullet}) \otimes h(E_r^{\bullet\bullet}) \cong h(E_r^{\bullet\bullet} \otimes E_r^{\bullet\bullet}) \xrightarrow{h(\varphi_r)} h(E_r^{\bullet\bullet}) = E_{r+1}^{\bullet\bullet}.$$

• Given a filtration Fil^* of a graded algebra (H^*, φ) , the filtration is **stable** with respect to φ if

$$\varphi(Fil^r H^* \otimes Fil^s H^*) \subseteq Fil^{r+s} H^*.$$

• A spectral sequence of algebras $\{E_r^{\bullet\bullet}, d_r\}$ converges to H^* as a graded algebra if there is a stable filtration on H^* for which $E_{\infty}^{\bullet\bullet}$ is isomorphic as a bigraded algebra to the associated bigraded algebra

$$Gr^p(H^*) = {}^{Fil^pH^*} / {}^{Fil^{p+1}H^*}.$$

イロト (日下 (日下 (日下)))

Suppose $E_2^{\bullet\bullet}$ is given as an algebra by

$$E_2^{\bullet \bullet} \cong \mathbf{Q}[x, y, z]/(x^2 = y^4 = z^2 = 0)$$

where deg x = (7, 1), deg y = (3, 0), deg z = (0, 2), $d_2(x) = y^3$, and $d_3(z) = y$.

うして ふゆ とう かんし とう うくしゃ

Suppose $E_2^{\bullet\bullet}$ is given as an algebra by

$$E_2^{\bullet \bullet} \cong \mathbf{Q}[x, y, z]/(x^2 = y^4 = z^2 = 0)$$

where deg x = (7, 1), deg y = (3, 0), deg z = (0, 2), $d_2(x) = y^3$, and $d_3(z) = y$.

We will see that the spectral sequence collapses at E_4 and xy survives to E_{∞} even though x and y do not.

First we draw page 2 (focusing only on generators of the algebra)

First we draw page 2 (focusing only on generators of the algebra)

◆□ > ◆母 > ◆臣 > ◆臣 > ─ 臣 = ∽へぐ

First we draw page 2 (focusing only on generators of the algebra)

Here is page 3:

<ロト < 回 ト < 三 ト < 三 ト 三 のへで</p>

Here is page 3:

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへ⊙

・ロト ・ 理ト ・ ヨト ・ ヨト

3

990

Here is page 3:

an isomorphism. We can now draw page E_4 :

Here is page 4:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Here is page 4:

Definitions

イロト (日下 (日下 (日下)))

 If (Γ^{*}, φ) is a graded algebra, then a graded vector space H^{*} is a Γ^{*}-module if the module scalar multiplication

$$m : \Gamma^* \otimes H^* \rightarrow H^*$$

respects the multiplication of Γ^* ; i.e.,

commutes.

 If Γ* is a graded algebra and E^{ΦΦ} is a bigraded vector space, then Γ* acts vertically on E^{ΦΦ} if for all n ≥ 0, E^{nΦ} is a Γ*-module. In other words, there is a scalar multiplication map

$$m_n : \Gamma^* \otimes E^{n \bullet} \to E^{n \bullet}$$

for each n. It is called vertical since

$$m_n: \Gamma^s \otimes E^{nt} \to E^{n,s+t}$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

For an example of a Γ^* acting vertically on $E^{\bullet\bullet}$, consider a filtered graded vector space/ Γ^* -module, call it H^* . Suppose further that the Γ^* -action is *filtration preserving*; i.e.,

 $\Gamma^* \otimes Fil^p H^* \to Fil^p H^*.$

One can check that Γ^* acts vertically on the associated graded vector space

$$Gr^p(H^*) = {}^{Fil^pH^*} / {}_{Fil^{p+1}H^*}.$$

Definitions

- A graded algebra Γ* acts on a spectral sequence {E_r^{••}, d_r} if
 (1) Γ* acts on E_r^{••} for each r,
 (2) d_r is Γ*-linear for each r, and
 (3) the Γ*-action on E_{r+1}^{••} is induced through homology from the action of Γ* on E_r^{••}.
- A spectral sequence $\{E_r^{\bullet\bullet}, d_r\}$ converges to H^* as a Γ^* -module if

(1)
$$E_r^{\bullet \bullet} \Rightarrow H^*$$
,
(2) Γ^* acts on H^* , and
(3) the filtration Fil^* on H^* induces a Γ^* -action on
 $Gr^p(H^*) = \frac{Fil^p H^*}{Fil^{p+1}H^*}$ that is isomorphic to the
 Γ^* -action on $E_{\infty}^{\bullet \bullet}$.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Suppose $\Gamma^* = \mathbf{Q}[a, b]$ with deg a = 2, deg b = 5. Suppose there is a spectral sequence with $E_2^{\bullet \bullet}$ such that

- $E_2^{\bullet \bullet}$ is a Γ^* -module,
- its Γ^* -module generators are $\{x, y, z, w\}$ with deg x = (8, 4), deg y = (6, 0), deg z = (0, 4), deg w = (10, 1), and
- except for that bx = 0, Γ^* acts freely on this basis.

うして ふゆ とう かんし とう うくしゃ

Suppose $\Gamma^* = \mathbf{Q}[a, b]$ with deg a = 2, deg b = 5. Suppose there is a spectral sequence with $E_2^{\bullet \bullet}$ such that

- $E_2^{\bullet \bullet}$ is a Γ^* -module,
- its Γ^* -module generators are $\{x, y, z, w\}$ with deg x = (8, 4), deg y = (6, 0), deg z = (0, 4), deg w = (10, 1), and
- except for that bx = 0, Γ^* acts freely on this basis.

We will see that the spectral sequence collapses at E_2 .

Before drawing page 2, note that it is enough to show that $d_r = 0$ on basis elements for all r > 2, since d_r commute with the Γ^* action. We now draw page 2:

bz	•	•	•	•	•	ba^2y	•	•	•	a^4w	•
a^2z	•	•	•	•	•	a^4y	•	a^2x	•	baw	•
	•	•	•	•	•	bay	•	•	•	a^3w	•
az	•	•	•	•	•	a^3y	•	ax	•	bw	•
						bu		•		a^2w	
Ĩ						0 ⁹		~		•	
Ĩ	•	•	•	•	•	u y	•	r	•	•	•
Ì	•	•	•	•	•	•	•	•	•	aw	•
1	•	•	•	•	•	ay	•	•	•	•	•
+	•	•	•	•	•	•	•	•	•	w	•
-	•	•	•	•	•	- y -	•	•	•	•	•

・ロト ・ 中下・ ・ 中下・ ・ 日 ・ うへの

<ロト < 目 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

The generator z survives to E_{∞} since deg z = (0, 4) and $d_r(z)$ must have total degree 5, but $E_2^{\bullet\bullet}$ is trivial there.

◆□▶ ◆□▶ ◆□▶ ◆□▶ = ● のへ⊙

The generator z survives to E_{∞} since deg z = (0, 4) and $d_r(z)$ must have total degree 5, but $E_2^{\bullet\bullet}$ is trivial there.

The generator y survives to E_{∞} since no Γ^* -multiple of z hits y with any d_r , and y cannot bound any other element.

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - のへで

The generator z survives to E_{∞} since deg z = (0, 4) and $d_r(z)$ must have total degree 5, but $E_2^{\bullet\bullet}$ is trivial there.

The generator y survives to E_{∞} since no Γ^* -multiple of z hits y with any d_r , and y cannot bound any other element.

This argument doesn't work for w, since $d_4(a^2y) = w$.

うして ふゆ とう かんし とう うくしゃ

The generator z survives to E_{∞} since deg z = (0, 4) and $d_r(z)$ must have total degree 5, but $E_2^{\bullet\bullet}$ is trivial there.

The generator y survives to E_{∞} since no Γ^* -multiple of z hits y with any d_r , and y cannot bound any other element.

This argument doesn't work for w, since $d_4(a^2y) = w$. But differentials commute with the action, so $d_4(a^2y) = a^2d_4(y) = 0$. Thus, w survives, since it cannot be hit by any Γ^* -multiple of x or y.

The generator z survives to E_{∞} since deg z = (0, 4) and $d_r(z)$ must have total degree 5, but $E_2^{\bullet\bullet}$ is trivial there.

The generator y survives to E_{∞} since no Γ^* -multiple of z hits y with any d_r , and y cannot bound any other element.

This argument doesn't work for w, since $d_4(a^2y) = w$. But differentials commute with the action, so $d_4(a^2y) = a^2d_4(y) = 0$. Thus, w survives, since it cannot be hit by any Γ^* -multiple of x or y.

Finally, $d_2(x) = aw$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

The generator z survives to E_{∞} since deg z = (0, 4) and $d_r(z)$ must have total degree 5, but $E_2^{\bullet\bullet}$ is trivial there.

The generator y survives to E_{∞} since no Γ^* -multiple of z hits y with any d_r , and y cannot bound any other element.

This argument doesn't work for w, since $d_4(a^2y) = w$. But differentials commute with the action, so $d_4(a^2y) = a^2d_4(y) = 0$. Thus, w survives, since it cannot be hit by any Γ^* -multiple of x or y.

Finally, $d_2(x) = aw$. We reach a contradiction by realizing $0 = d_2(0) = d_2(bx) = bd_2(x) = baw \neq 0$, so $d_2(x) = 0$.

The generator z survives to E_{∞} since deg z = (0, 4) and $d_r(z)$ must have total degree 5, but $E_2^{\bullet\bullet}$ is trivial there.

The generator y survives to E_{∞} since no Γ^* -multiple of z hits y with any d_r , and y cannot bound any other element.

This argument doesn't work for w, since $d_4(a^2y) = w$. But differentials commute with the action, so $d_4(a^2y) = a^2d_4(y) = 0$. Thus, w survives, since it cannot be hit by any Γ^* -multiple of x or y.

Finally, $d_2(x) = aw$. We reach a contradiction by realizing $0 = d_2(0) = d_2(bx) = bd_2(x) = baw \neq 0$, so $d_2(x) = 0$. $d_r(x) = 0$ for r > 2 since arrows will go down and right and increase total degree by 1, missing any other nonzero terms. Hence x survives to E_{∞} too.

Definition

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

 A graded algebra (H*, ·) is graded commutative (skew-commutative) if

$$x \cdot y = (-1)^{pq} y \cdot x$$

for $x \in H^p$ and $y \in H^q$.

Let $k = \mathbf{Q}$ and (A^*, \cdot) , (B^*, \cdot) be free graded skew-commutative algebras. We show that there are only two possibilities for A^* and B^* . If x_{2n} generates A^* and deg $x_{2n} = 2n$, then observe

$$x_{2n}^{k} \cdot x_{2n}^{\ell} = (-1)^{k \cdot 2n \cdot \ell \cdot 2n} x_{2n}^{\ell} \cdot x_{2n}^{k} = x_{2n}^{\ell} \cdot x_{2n}^{k}.$$

Hence we have honest commutativity, and $A^* \cong \mathbf{Q}[x_{2n}]$, the *polynomial algebra* on one generator of dimension 2n. On the other hand, if x_{2n+1} generates B^* with deg $x_{2n+1} = 2n+1$, then

$$x_{2n+1} \cdot x_{2n+1} = (-1)^{(2n+1)(2n+1)} x_{2n+1} \cdot x_{2n+1} = -x_{2n+1} \cdot x_{2n+1},$$

we have $(x_{2n+1})^2 = (x_{2n+1})^{\geq 2} = 0$. Call $B^* = \Lambda(x_{2n+1})$, the *exterior algebra* on one generator of dimension 2n + 1.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Suppose there is a spectral sequence of algebras $\{E_r^{\bullet\bullet}, d_r\}$ such that $E_2^{\bullet\bullet} \cong V^* \otimes W^*$ as bigraded algebras, where V^* and W^* are graded algebras, and $E_2^{\bullet\bullet} \Rightarrow H^*$ as a graded algebra.

Suppose further that $H^* \cong \mathbf{Q}$ (where \mathbf{Q} as a graded algebra is $H^0 = \mathbf{Q}, H^{>0} = 0$).

We claim if $V^* \cong \mathbf{Q}[x_{2n}]$, then $W^* \cong \Lambda(x_{2n-1})$ (and vice versa, if $V^* \cong \Lambda(x_{2n+1})$, then $W^* \cong \mathbf{Q}[x_{2n}]$).

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Let $V^* \cong \mathbf{Q}[x_{2n}]$. We show $W^* \cong \Lambda(x_{2n+1})$. Recall that $d_r(v \otimes w)$ satisfies the Leibniz rule; i.e.,

$$d_r(v \otimes w) = d_r(v) \otimes w + (-1)^{\deg v} v \otimes d_r(w).$$

Also note that $d_r|_{V^*} = 0$ and $d_r|_{W^*}$ has image in $V^* \otimes W^*$. If $d_r(1 \otimes w) = \sum v_j \otimes w_j$, then observe that via the Leibniz rule,

$$d_r(1\otimes w^k) = k\left(\sum v_j\otimes (w_jw^{k-1})\right).$$

We will build a page of the spectral sequence using the fact that we know our spectral sequence converges to \mathbf{Q} to show that $W^* \cong \Lambda(x_{2n+1})$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

We will build a page of the spectral sequence using the fact that we know our spectral sequence converges to \mathbf{Q} to show that $W^* \cong \Lambda(x_{2n+1})$.

We will build a page of the spectral sequence using the fact that we know our spectral sequence converges to \mathbf{Q} to show that $W^* \cong \Lambda(x_{2n+1})$.

Since x_{2n} does not survive to E_{∞} , there exists $x_{2n-1} \in W^*$ such that $d_{2n}(1 \otimes x_{2n-1}) = x_{2n} \otimes 1$.

We will build a page of the spectral sequence using the fact that we know our spectral sequence converges to **Q** to show that $W^* \cong \Lambda(x_{2n+1})$.

Since x_{2n} does not survive to E_{∞} , there exists $x_{2n-1} \in W^*$ such that $d_{2n}(1 \otimes x_{2n-1}) = x_{2n} \otimes 1$. The existence of x_{2n-1} generates new elements on page 2: $(x_{2n})^{\ell} \otimes x_{2n-1}$.

We will build a page of the spectral sequence using the fact that we know our spectral sequence converges to **Q** to show that $W^* \cong \Lambda(x_{2n+1})$.

Since x_{2n} does not survive to E_{∞} , there exists $x_{2n-1} \in W^*$ such that $d_{2n}(1 \otimes x_{2n-1}) = x_{2n} \otimes 1$. The existence of x_{2n-1} generates new elements on page 2: $(x_{2n})^{\ell} \otimes x_{2n-1}$. Since d_{2n-1} is a differential, hence derivation,

$$d_{2n-1}((x_{2n})^{\ell} \otimes x_{2n-1}) = d_{2n-1}((x_{2n})^m) \otimes x_{2n-1} + (x_{2n})^m \otimes d_{2n-1}(x_{2n-1})$$
$$= md_{2n-1}(x_{2n})(x_{2n})^{m-1}) \otimes x_{2n-1} + (x_{2n})^{m+1} \otimes 1$$
$$= (x_{2n})^{m+1} \otimes 1.$$

We will build a page of the spectral sequence using the fact that we know our spectral sequence converges to **Q** to show that $W^* \cong \Lambda(x_{2n+1})$.

Since x_{2n} does not survive to E_{∞} , there exists $x_{2n-1} \in W^*$ such that $d_{2n}(1 \otimes x_{2n-1}) = x_{2n} \otimes 1$. The existence of x_{2n-1} generates new elements on page 2: $(x_{2n})^{\ell} \otimes x_{2n-1}$. Since d_{2n-1} is a differential, hence derivation,

$$d_{2n-1}((x_{2n})^{\ell} \otimes x_{2n-1}) = d_{2n-1}((x_{2n})^m) \otimes x_{2n-1} + (x_{2n})^m \otimes d_{2n-1}(x_{2n-1})$$
$$= md_{2n-1}(x_{2n})(x_{2n})^{m-1}) \otimes x_{2n-1} + (x_{2n})^{m+1} \otimes 1$$
$$= (x_{2n})^{m+1} \otimes 1.$$

Hence the arrows above.

We will build a page of the spectral sequence using the fact that we know our spectral sequence converges to **Q** to show that $W^* \cong \Lambda(x_{2n+1})$.

Since x_{2n} does not survive to E_{∞} , there exists $x_{2n-1} \in W^*$ such that $d_{2n}(1 \otimes x_{2n-1}) = x_{2n} \otimes 1$. The existence of x_{2n-1} generates new elements on page 2: $(x_{2n})^{\ell} \otimes x_{2n-1}$. Since d_{2n-1} is a differential, hence derivation,

$$d_{2n-1}((x_{2n})^{\ell} \otimes x_{2n-1}) = d_{2n-1}((x_{2n})^m) \otimes x_{2n-1} + (x_{2n})^m \otimes d_{2n-1}(x_{2n-1})$$
$$= md_{2n-1}(x_{2n})(x_{2n})^{m-1}) \otimes x_{2n-1} + (x_{2n})^{m+1} \otimes 1$$
$$= (x_{2n})^{m+1} \otimes 1.$$

Hence the arrows above.

Finally, observe that if W^* had any other elements, they would give rise to classes that would persist to E_{∞} , contradicting that $H^* = \mathbf{Q}$. Hence $W^* \cong \Lambda(x_{2n-1})$, as desired.

▲ロト ▲昼 ▶ ▲ 臣 ▶ ▲ 臣 ● のへで

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Suppose there is a spectral sequence of algebras $\{E_r^{\bullet\bullet}, d_r\}$ such that $E_2^{\bullet\bullet} \cong V^* \otimes W^*$ as bigraded algebras, where V^* and W^* are graded algebras, and $E_2^{\bullet\bullet} \Rightarrow H^*$ as a graded algebra. Suppose further that $H^* \cong \mathbf{Q}$. We claim if $V^* \cong \mathbf{Q}[x_2]/(x_2)^3$, then $W^* \cong \Lambda(x_1) \otimes \mathbf{Q}[z]$.

Another proof by building page 2. We start with

Another proof by building page 2. We start with

First, we need $\Lambda(x_1)$ in W^* such that $d_2(x_1) = x_2$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Another proof by building page 2. We start with

First, we need $\Lambda(x_1)$ in W^* such that $d_2(x_1) = x_2$. We get the following elements and maps.

◆□▶ ◆□▶ ◆□▶ ◆□▶ = ● のへ⊙

Another proof by building page 2. We start with

First, we need $\Lambda(x_1)$ in W^* such that $d_2(x_1) = x_2$. We get the following elements and maps. We need to take care of $(x_2)^2 \otimes x_1$. It cannot map to anything, so we need an element to map to it. Since $(x_2)^2 \otimes x_1$ has total degree 5, we need $z \in W^*$ with degree 4 such that $d_4(z) = (x_2)^2 \otimes x_1$.

・ロト ・ 理ト ・ ヨト ・ ヨト

3

nac

Another proof by building page 2. We start with

First, we need $\Lambda(x_1)$ in W^* such that $d_2(x_1) = x_2$. We get the following elements and maps. We need to take care of $(x_2)^2 \otimes x_1$. It cannot map to anything, so we need an element to map to it. Since $(x_2)^2 \otimes x_1$ has total degree 5, we need $z \in W^*$ with degree 4 such that $d_4(z) = (x_2)^2 \otimes x_1$. We get the following elements and maps.

イロト イロト イヨト

э

Sac

Another proof by building page 2. We start with

First, we need $\Lambda(x_1)$ in W^* such that $d_2(x_1) = x_2$. We get the following elements and maps. We need to take care of $(x_2)^2 \otimes x_1$. It cannot map to anything, so we need an element to map to it. Since $(x_2)^2 \otimes x_1$ has total degree 5, we need $z \in W^*$ with degree 4 such that $d_4(z) = (x_2)^2 \otimes x_1$. We get the following elements and maps. Observe via computation that

Observe via computation that $d_4\left(\frac{1}{2}z^2\right) = (x_2)^2 \otimes (x_1 \otimes z).$

Another proof by building page 2. We start with

First, we need $\Lambda(x_1)$ in W^* such that $d_2(x_1) = x_2$. We get the following elements and maps. We need to take care of $(x_2)^2 \otimes x_1$. It cannot map to anything, so we need an element to map to it. Since $(x_2)^2 \otimes x_1$ has total degree 5, we need $z \in W^*$ with degree 4 such that $d_4(z) = (x_2)^2 \otimes x_1$. We get the following elements and maps. Observe via computation that

 $d_4\left(\frac{1}{2}z^2\right) = (x_2)^2 \otimes (x_1 \otimes z).$ The pattern continues.