Notation

Throughout:

- We work over a field k with vector spaces.
- Spectral sequences will be cohomologically indexed.

(arrows on page r go r right and $r-1$ down)
- Homology and cohomology are indicated with lowercase h.

Definitions

- A k-vector space H^{*} is graded if $H^{*} \cong \bigoplus_{n \in \mathbf{N}} H^{n}$ where H^{n} is a vector space.
- A graded vector space H^{*} is a graded algebra if there is a product $\varphi: H^{p} \otimes_{k} H^{q} \rightarrow H^{p+q}$ for all p and q. The product must be associative. We write $\varphi(a, b)$ as $a \cdot b$.
- Algebras will often have a unit.
- A vector space $E^{\bullet \bullet}$ is bigraded if $E^{\bullet \bullet} \cong \bigoplus E^{p q}$ where $(p, q) \in \mathbf{N} \times \mathbf{N}$
$E^{p q}$ is a vector space.
- A bigraded vector space $E^{\bullet \bullet}$ is a bigraded algebra if there is an associative product $\varphi: E^{m n} \otimes_{k} E^{r s} \rightarrow E^{m+r, n+s}$ for all m, n, r, s. Write $\varphi(a, b)=a \cdot b$.

Example

For an example of a bigraded algebra, take $\left(A^{*}, \varphi\right)$ and $\left(B^{*}, \psi\right)$ to be graded algebras with products. Let $E^{p q}=A^{p} \otimes B^{q}$ and observe that the following gives a product on $E^{p q}$:

$$
\begin{aligned}
E^{p q} \otimes E^{r s} & =A^{p} \otimes B^{q} \otimes A^{r} \otimes B^{s} \\
& \xrightarrow{\operatorname{id} \otimes T(\cdot \otimes \cdot) \otimes \mathrm{id}} A^{p} \otimes A^{r} \otimes B^{q} \otimes B^{s} \\
& \xrightarrow{\varphi \otimes \psi} A^{p+r} \otimes B^{q+s} \\
& =E^{p+r, q+s},
\end{aligned}
$$

where $T(b \otimes a)=(-1)^{\operatorname{deg} a \operatorname{deg} b} a \otimes b$.

Definitions

- A graded algebra $\left(H^{*}, \cdot\right)$ is a differential graded algebra if there exists a degree 1 linear map $d: H^{*} \rightarrow H^{*}$ such that

$$
d(a \cdot b)=d(a) \cdot b+(-1)^{\operatorname{deg} a} a \cdot d(b) .
$$

- Such a d is called a derivation.
- A bigraded algebra $\left(E^{\bullet \bullet}, \cdot\right)$ is a differential bigraded algebra if there exists a derivation

$$
d: \bigoplus_{p+q=n} E^{p q} \rightarrow \bigoplus_{r+s=n+1} E^{r s}
$$

such that

$$
d(a \cdot b)=d(a) \cdot b+(-1)^{p+q} a \cdot d(b)
$$

for all $a \in E^{p q}$ and $b \in E^{p^{\prime} q^{\prime}}$.

Example

For an example of a differential bigraded algebra, take two differential graded algebras $\left(A^{*}, \cdot, d_{A}\right)$ and $\left(B^{*}, \cdot, d_{B}\right)$. Let

$$
E^{\bullet \bullet}=A^{*} \otimes B^{*}
$$

and let the differential d_{E} on $E^{\bullet \bullet}$ be

$$
d_{E}(\alpha \otimes \beta)=d_{A}(\alpha) \otimes \beta+(-1)^{\operatorname{deg} \alpha} \alpha \otimes d_{B}(\beta)
$$

Then one can check that
$d_{E}(\alpha \otimes \beta \cdot \gamma \otimes \delta)=d_{E}(\alpha \otimes \beta) \cdot \gamma \otimes \delta+(-1)^{p+q} \alpha \otimes \beta \cdot d_{E}(\gamma \otimes \delta)$
for $\alpha \otimes \beta \in E^{p q}, \gamma \otimes \delta \in E^{p^{\prime} q^{\prime}}$.

Definitions

- A spectral sequence $\left\{E_{r}^{\bullet \bullet}, d_{r}\right\}$ is a spectral sequence of algebras if for each $r,\left(E_{r}^{\bullet \bullet}, \varphi_{r}, d_{r}\right)$ is a differential bigraded algebra and the product φ_{r+1} on $E_{r+1}^{\bullet \bullet}$ is induced by the product φ_{r} of $E_{r}^{\bullet \bullet}$ on homology. In other words, φ_{r+1} is the composition

$$
E_{r+1}^{\bullet \bullet} \otimes E_{r+1}^{\bullet \bullet}=h\left(E_{r}^{\bullet \bullet}\right) \otimes h\left(E_{r}^{\bullet \bullet \bullet}\right) \cong h\left(E_{r}^{\bullet \bullet} \otimes E_{r}^{\bullet \bullet}\right) \xrightarrow{h\left(\varphi_{r}\right)} h\left(E_{r}^{\bullet \bullet}\right)=E_{r+1}^{\bullet \bullet}
$$

- Given a filtration Fil * of a graded algebra $\left(H^{*}, \varphi\right)$, the filtration is stable with respect to φ if

$$
\varphi\left(F i l^{r} H^{*} \otimes F i l^{s} H^{*}\right) \subseteq F i l^{r+s} H^{*}
$$

- A spectral sequence of algebras $\left\{E_{r}^{\bullet \bullet}, d_{r}\right\}$ converges to H^{*} as a graded algebra if there is a stable filtration on H^{*} for which $E_{\infty}^{\bullet \bullet}$ is isomorphic as a bigraded algebra to the associated bigraded algebra

$$
G r^{p}\left(H^{*}\right)=F i l^{p} H^{*} / F i l^{p+1} H^{*}
$$

Example

Suppose $E_{2}^{\bullet \bullet}$ is given as an algebra by

$$
E_{2}^{\bullet \bullet} \cong \mathbf{Q}[x, y, z] /\left(x^{2}=y^{4}=z^{2}=0\right)
$$

where $\operatorname{deg} x=(7,1), \operatorname{deg} y=(3,0), \operatorname{deg} z=(0,2), d_{2}(x)=y^{3}$, and $d_{3}(z)=y$.

Example

Suppose $E_{2}^{\bullet \bullet}$ is given as an algebra by

$$
E_{2}^{\bullet \bullet} \cong \mathbf{Q}[x, y, z] /\left(x^{2}=y^{4}=z^{2}=0\right)
$$

where $\operatorname{deg} x=(7,1), \operatorname{deg} y=(3,0), \operatorname{deg} z=(0,2), d_{2}(x)=y^{3}$, and $d_{3}(z)=y$.

We will see that the spectral sequence collapses at E_{4} and $x y$ survives to E_{∞} even though x and y do not.

Example

First we draw page 2 (focusing only on generators of the algebra)

Example

First we draw page 2 (focusing only on generators of the algebra)

Example

First we draw page 2 (focusing only on generators of the algebra)

Since d_{2} above takes basis elements to basis elements, it is an isomorphism of vector spaces. Thus homology vanishes there, and page E_{3} is as follows:

Example

Here is page 3:

Example

Here is page 3:

Example

Here is page 3:

Once again, d_{3} takes basis elements to basis elements, hence is an isomorphism. We can now draw page E_{4} :

Example

Here is page 4:

Example

Here is page 4:

There are no nonzero differentials at this stage. Thus the spectral sequence has abutted at page 4 to the infinite page. We can observe here that indeed, $x y$ survived, but x and y did not.

Definitions

- If $\left(\Gamma^{*}, \varphi\right)$ is a graded algebra, then a graded vector space H^{*} is a Γ^{*} - module if the module scalar multiplication

$$
m: \Gamma^{*} \otimes H^{*} \rightarrow H^{*}
$$

respects the multiplication of Γ^{*}; i.e.,

commutes.

- If Γ^{*} is a graded algebra and $E^{\bullet \bullet}$ is a bigraded vector space, then Γ^{*} acts vertically on $E^{\bullet \bullet}$ if for all $n \geq 0, E^{n \bullet}$ is a Γ^{*}-module. In other words, there is a scalar multiplication map

$$
m_{n}: \Gamma^{*} \otimes E^{n \bullet} \rightarrow E^{n \bullet}
$$

for each n. It is called vertical since

$$
m_{n}: \Gamma^{s} \otimes E^{n t} \rightarrow E^{n, s+t}
$$

Example

For an example of a Γ^{*} acting vertically on $E^{\bullet \bullet}$, consider a filtered graded vector space $/ \Gamma^{*}$-module, call it H^{*}. Suppose further that the Γ^{*}-action is filtration preserving; i.e.,

$$
\Gamma^{*} \otimes F i l^{p} H^{*} \rightarrow F i l^{p} H^{*} .
$$

One can check that Γ^{*} acts vertically on the associated graded vector space

$$
G r^{p}\left(H^{*}\right)=F i l^{p} H^{*} / F i l^{p+1} H^{*}
$$

Definitions

- A graded algebra Γ^{*} acts on a spectral sequence $\left\{E_{r}^{\bullet \bullet}, d_{r}\right\}$ if
(1) Γ^{*} acts on $E_{r}^{\bullet \bullet}$ for each r,
(2) d_{r} is Γ^{*}-linear for each r, and
(3) the Γ^{*}-action on $E_{r+1}^{\bullet \bullet}$ is induced through homology from the action of Γ^{*} on $E_{r}^{\bullet \bullet}$.
- A spectral sequence $\left\{E_{r}^{\bullet \bullet}, d_{r}\right\}$ converges to H^{*} as a Γ^{*}-module if
(1) $E_{r}^{\bullet \bullet} \Rightarrow H^{*}$,
(2) Γ^{*} acts on H^{*}, and
(3) the filtration Fil * on H^{*} induces a Γ^{*}-action on
$G r^{p}\left(H^{*}\right)=F i l^{p} H^{*} /$ Fil $^{p+1} H^{*}$ that is isomorphic to the Γ^{*}-action on $E_{\infty}^{\bullet \bullet}$.

Example

Suppose $\Gamma^{*}=\mathbf{Q}[a, b]$ with $\operatorname{deg} a=2, \operatorname{deg} b=5$. Suppose there is a spectral sequence with $E_{2}^{\bullet \bullet}$ such that

- $E_{2}^{\bullet \bullet}$ is a Γ^{*}-module,
- its Γ^{*}-module generators are $\{x, y, z, w\}$ with $\operatorname{deg} x=(8,4)$, $\operatorname{deg} y=(6,0), \operatorname{deg} z=(0,4), \operatorname{deg} w=(10,1)$, and
- except for that $b x=0, \Gamma^{*}$ acts freely on this basis.

Example

Suppose $\Gamma^{*}=\mathbf{Q}[a, b]$ with $\operatorname{deg} a=2, \operatorname{deg} b=5$. Suppose there is a spectral sequence with $E_{2}^{\bullet \bullet}$ such that

- $E_{2}^{\bullet \bullet}$ is a Γ^{*}-module,
- its Γ^{*}-module generators are $\{x, y, z, w\}$ with $\operatorname{deg} x=(8,4)$, $\operatorname{deg} y=(6,0), \operatorname{deg} z=(0,4), \operatorname{deg} w=(10,1)$, and
- except for that $b x=0, \Gamma^{*}$ acts freely on this basis.

We will see that the spectral sequence collapses at E_{2}.

Example

Before drawing page 2, note that it is enough to show that $d_{r}=0$ on basis elements for all $r>2$, since d_{r} commute with the Γ^{*} action. We now draw page 2:

Example

Example

The generator z survives to E_{∞} since $\operatorname{deg} z=(0,4)$ and $d_{r}(z)$ must have total degree 5 , but $E_{2}^{\bullet \bullet}$ is trivial there.

Example

The generator z survives to E_{∞} since $\operatorname{deg} z=(0,4)$ and $d_{r}(z)$ must have total degree 5 , but $E_{2}^{\bullet \bullet}$ is trivial there.
The generator y survives to E_{∞} since no Γ^{*}-multiple of z hits y with any d_{r}, and y cannot bound any other element.

Example

The generator z survives to E_{∞} since $\operatorname{deg} z=(0,4)$ and $d_{r}(z)$ must have total degree 5 , but $E_{2}^{\bullet \bullet}$ is trivial there.
The generator y survives to E_{∞} since no Γ^{*}-multiple of z hits y with any d_{r}, and y cannot bound any other element.
This argument doesn't work for w, since $d_{4}\left(a^{2} y\right)=w$.

Example

The generator z survives to E_{∞} since $\operatorname{deg} z=(0,4)$ and $d_{r}(z)$ must have total degree 5 , but $E_{2}^{\bullet \bullet}$ is trivial there.
The generator y survives to E_{∞} since no Γ^{*}-multiple of z hits y with any d_{r}, and y cannot bound any other element.
This argument doesn't work for w, since $d_{4}\left(a^{2} y\right)=w$. But differentials commute with the action, so $d_{4}\left(a^{2} y\right)=a^{2} d_{4}(y)=0$. Thus, w survives, since it cannot be hit by any Γ^{*}-multiple of x or y.

Example

The generator z survives to E_{∞} since $\operatorname{deg} z=(0,4)$ and $d_{r}(z)$ must have total degree 5 , but $E_{2}^{\bullet \bullet}$ is trivial there.
The generator y survives to E_{∞} since no Γ^{*}-multiple of z hits y with any d_{r}, and y cannot bound any other element.
This argument doesn't work for w, since $d_{4}\left(a^{2} y\right)=w$. But differentials commute with the action, so $d_{4}\left(a^{2} y\right)=a^{2} d_{4}(y)=0$. Thus, w survives, since it cannot be hit by any Γ^{*}-multiple of x or y.
Finally, $d_{2}(x)=a w$.

Example

The generator z survives to E_{∞} since $\operatorname{deg} z=(0,4)$ and $d_{r}(z)$ must have total degree 5 , but $E_{2}^{\bullet \bullet}$ is trivial there.
The generator y survives to E_{∞} since no Γ^{*}-multiple of z hits y with any d_{r}, and y cannot bound any other element.
This argument doesn't work for w, since $d_{4}\left(a^{2} y\right)=w$. But differentials commute with the action, so $d_{4}\left(a^{2} y\right)=a^{2} d_{4}(y)=0$. Thus, w survives, since it cannot be hit by any Γ^{*}-multiple of x or y.
Finally, $d_{2}(x)=a w$. We reach a contradiction by realizing $0=d_{2}(0)=d_{2}(b x)=b d_{2}(x)=$ baw $\neq 0$, so $d_{2}(x)=0$.

Example

The generator z survives to E_{∞} since $\operatorname{deg} z=(0,4)$ and $d_{r}(z)$ must have total degree 5 , but $E_{2}^{\bullet \bullet}$ is trivial there.
The generator y survives to E_{∞} since no Γ^{*}-multiple of z hits y with any d_{r}, and y cannot bound any other element.
This argument doesn't work for w, since $d_{4}\left(a^{2} y\right)=w$. But differentials commute with the action, so $d_{4}\left(a^{2} y\right)=a^{2} d_{4}(y)=0$. Thus, w survives, since it cannot be hit by any Γ^{*}-multiple of x or y.
Finally, $d_{2}(x)=a w$. We reach a contradiction by realizing $0=d_{2}(0)=d_{2}(b x)=b d_{2}(x)=$ baw $\neq 0$, so $d_{2}(x)=0 . d_{r}(x)=0$ for $r>2$ since arrows will go down and right and increase total degree by 1 , missing any other nonzero terms. Hence x survives to E_{∞} too.

Definition

- A graded algebra $\left(H^{*}, \cdot\right)$ is graded commutative (skew-commutative) if

$$
x \cdot y=(-1)^{p q} y \cdot x
$$

for $x \in H^{p}$ and $y \in H^{q}$.

Example

Let $k=\mathbf{Q}$ and $\left(A^{*}, \cdot\right),\left(B^{*}, \cdot\right)$ be free graded skew-commutative algebras. We show that there are only two possibilities for A^{*} and B^{*}. If $x_{2 n}$ generates A^{*} and $\operatorname{deg} x_{2 n}=2 n$, then observe

$$
x_{2 n}^{k} \cdot x_{2 n}^{\ell}=(-1)^{k \cdot 2 n \cdot \ell \cdot 2 n} x_{2 n}^{\ell} \cdot x_{2 n}^{k}=x_{2 n}^{\ell} \cdot x_{2 n}{ }^{k}
$$

Hence we have honest commutativity, and $A^{*} \cong \mathbf{Q}\left[x_{2 n}\right]$, the polynomial algebra on one generator of dimension $2 n$.
On the other hand, if $x_{2 n+1}$ generates B^{*} with $\operatorname{deg} x_{2 n+1}=2 n+1$, then

$$
x_{2 n+1} \cdot x_{2 n+1}=(-1)^{(2 n+1)(2 n+1)} x_{2 n+1} \cdot x_{2 n+1}=-x_{2 n+1} \cdot x_{2 n+1}
$$

we have $\left(x_{2 n+1}\right)^{2}=\left(x_{2 n+1}\right)^{\geq 2}=0$. Call $B^{*}=\Lambda\left(x_{2 n+1}\right)$, the exterior algebra on one generator of dimension $2 n+1$.

Example

Suppose there is a spectral sequence of algebras $\left\{E_{r}^{\bullet \bullet}, d_{r}\right\}$ such that $E_{2}^{\bullet \bullet} \cong V^{*} \otimes W^{*}$ as bigraded algebras, where V^{*} and W^{*} are graded algebras, and $E_{2}^{\bullet \bullet} \Rightarrow H^{*}$ as a graded algebra. Suppose further that $H^{*} \cong \mathbf{Q}$ (where \mathbf{Q} as a graded algebra is $\left.H^{0}=\mathbf{Q}, H^{>0}=0\right)$.
We claim if $V^{*} \cong \mathbf{Q}\left[x_{2 n}\right]$, then $W^{*} \cong \Lambda\left(x_{2 n-1}\right)$ (and vice versa, if $V^{*} \cong \Lambda\left(x_{2 n+1}\right)$, then $\left.W^{*} \cong \mathbf{Q}\left[x_{2 n}\right]\right)$.

Example

Let $V^{*} \cong \mathbf{Q}\left[x_{2 n}\right]$. We show $W^{*} \cong \Lambda\left(x_{2 n+1}\right)$. Recall that $d_{r}(v \otimes w)$ satisfies the Leibniz rule; i.e.,

$$
d_{r}(v \otimes w)=d_{r}(v) \otimes w+(-1)^{\operatorname{deg} v} v \otimes d_{r}(w)
$$

Also note that $\left.d_{r}\right|_{V^{*}}=0$ and $\left.d_{r}\right|_{W^{*}}$ has image in $V^{*} \otimes W^{*}$. If $d_{r}(1 \otimes w)=\sum v_{j} \otimes w_{j}$, then observe that via the Leibniz rule,

$$
d_{r}\left(1 \otimes w^{k}\right)=k\left(\sum v_{j} \otimes\left(w_{j} w^{k-1}\right)\right) .
$$

Example

We will build a page of the spectral sequence using the fact that we know our spectral sequence converges to \mathbf{Q} to show that $W^{*} \cong \Lambda\left(x_{2 n+1}\right)$.

Example

We will build a page of the spectral sequence using the fact that we know our spectral sequence converges to \mathbf{Q} to show that $W^{*} \cong \Lambda\left(x_{2 n+1}\right)$.

Example

We will build a page of the spectral sequence using the fact that we know our spectral sequence converges to \mathbf{Q} to show that $W^{*} \cong \Lambda\left(x_{2 n+1}\right)$.

Since $x_{2 n}$ does not survive to E_{∞}, there exists $x_{2 n-1} \in W^{*}$ such that $d_{2 n}\left(1 \otimes x_{2 n-1}\right)=x_{2 n} \otimes 1$.

Example

We will build a page of the spectral sequence using the fact that we know our spectral sequence converges to \mathbf{Q} to show that $W^{*} \cong \Lambda\left(x_{2 n+1}\right)$.

Since $x_{2 n}$ does not survive to E_{∞}, there exists $x_{2 n-1} \in W^{*}$ such that $d_{2 n}\left(1 \otimes x_{2 n-1}\right)=x_{2 n} \otimes 1$. The existence of $x_{2 n-1}$ generates new elements on page 2 : $\left(x_{2 n}\right)^{\ell} \otimes x_{2 n-1}$.

Example

We will build a page of the spectral sequence using the fact that we know our spectral sequence converges to \mathbf{Q} to show that $W^{*} \cong \Lambda\left(x_{2 n+1}\right)$.

Since $x_{2 n}$ does not survive to E_{∞}, there exists $x_{2 n-1} \in W^{*}$ such that $d_{2 n}\left(1 \otimes x_{2 n-1}\right)=x_{2 n} \otimes 1$. The existence of $x_{2 n-1}$ generates new elements on page 2: $\left(x_{2 n}\right)^{\ell} \otimes x_{2 n-1}$. Since $d_{2 n-1}$ is a differential, hence derivation,

$$
\begin{aligned}
d_{2 n-1}\left(\left(x_{2 n}\right)^{\ell} \otimes x_{2 n-1}\right) & =d_{2 n-1}\left(\left(x_{2 n}\right)^{m}\right) \otimes x_{2 n-1}+\left(x_{2 n}\right)^{m} \otimes d_{2 n-1}\left(x_{2 n-1}\right) \\
& \left.=m d_{2 n-1}\left(x_{2 n}\right)\left(x_{2 n}\right)^{m-1}\right) \otimes x_{2 n-1}+\left(x_{2 n}\right)^{m+1} \otimes 1 \\
& =\left(x_{2 n}\right)^{m+1} \otimes 1
\end{aligned}
$$

Example

We will build a page of the spectral sequence using the fact that we know our spectral sequence converges to \mathbf{Q} to show that $W^{*} \cong \Lambda\left(x_{2 n+1}\right)$.

Since $x_{2 n}$ does not survive to E_{∞}, there exists $x_{2 n-1} \in W^{*}$ such that $d_{2 n}\left(1 \otimes x_{2 n-1}\right)=x_{2 n} \otimes 1$. The existence of $x_{2 n-1}$ generates new elements on page 2 : $\left(x_{2 n}\right)^{\ell} \otimes x_{2 n-1}$. Since $d_{2 n-1}$ is a differential, hence derivation,

$$
\begin{aligned}
d_{2 n-1}\left(\left(x_{2 n}\right)^{\ell} \otimes x_{2 n-1}\right) & =d_{2 n-1}\left(\left(x_{2 n}\right)^{m}\right) \otimes x_{2 n-1}+\left(x_{2 n}\right)^{m} \otimes d_{2 n-1}\left(x_{2 n-1}\right) \\
& \left.=m d_{2 n-1}\left(x_{2 n}\right)\left(x_{2 n}\right)^{m-1}\right) \otimes x_{2 n-1}+\left(x_{2 n}\right)^{m+1} \otimes 1 \\
& =\left(x_{2 n}\right)^{m+1} \otimes 1
\end{aligned}
$$

Hence the arrows above.

Example

We will build a page of the spectral sequence using the fact that we know our spectral sequence converges to \mathbf{Q} to show that $W^{*} \cong \Lambda\left(x_{2 n+1}\right)$.

Since $x_{2 n}$ does not survive to E_{∞}, there exists $x_{2 n-1} \in W^{*}$ such that $d_{2 n}\left(1 \otimes x_{2 n-1}\right)=x_{2 n} \otimes 1$. The existence of $x_{2 n-1}$ generates new elements on page 2: $\left(x_{2 n}\right)^{\ell} \otimes x_{2 n-1}$. Since $d_{2 n-1}$ is a differential, hence derivation,

$$
\begin{aligned}
d_{2 n-1}\left(\left(x_{2 n}\right)^{\ell} \otimes x_{2 n-1}\right) & =d_{2 n-1}\left(\left(x_{2 n}\right)^{m}\right) \otimes x_{2 n-1}+\left(x_{2 n}\right)^{m} \otimes d_{2 n-1}\left(x_{2 n-1}\right) \\
& \left.=m d_{2 n-1}\left(x_{2 n}\right)\left(x_{2 n}\right)^{m-1}\right) \otimes x_{2 n-1}+\left(x_{2 n}\right)^{m+1} \otimes 1 \\
& =\left(x_{2 n}\right)^{m+1} \otimes 1
\end{aligned}
$$

Hence the arrows above.
Finally, observe that if W^{*} had any other elements, they would give rise to classes that would persist to E_{∞}, contradicting that $H^{*}=\mathbf{Q}$. Hence $W^{*} \cong \Lambda\left(x_{2 n-1}\right)$, as desired.

Example

Suppose there is a spectral sequence of algebras $\left\{E_{r}^{\bullet \bullet}, d_{r}\right\}$ such that $E_{2}^{\bullet \bullet} \cong V^{*} \otimes W^{*}$ as bigraded algebras, where V^{*} and W^{*} are graded algebras, and $E_{2}^{\bullet \bullet} \Rightarrow H^{*}$ as a graded algebra.
Suppose further that $H^{*} \cong \mathbf{Q}$.
We claim if $V^{*} \cong \mathbf{Q}\left[x_{2}\right] /\left(x_{2}\right)^{3}$, then $W^{*} \cong \Lambda\left(x_{1}\right) \otimes \mathbf{Q}[z]$.

Example

Another proof by building page 2 . We start with

Example

Another proof by building page 2. We start with
First, we need $\Lambda\left(x_{1}\right)$ in W^{*} such that $d_{2}\left(x_{1}\right)=x_{2}$.

Example

Another proof by building page 2 . We start with
First, we need $\Lambda\left(x_{1}\right)$ in W^{*} such that $d_{2}\left(x_{1}\right)=x_{2}$.
We get the following elements and maps.

Example

Another proof by building page 2 . We start with
First, we need $\Lambda\left(x_{1}\right)$ in W^{*} such

We get the following elements and maps.
We need to take care of $\left(x_{2}\right)^{2} \otimes x_{1}$. It cannot map to anything, so we need an element to map to it. Since $\left(x_{2}\right)^{2} \otimes x_{1}$ has total degree 5 , we need
$z \in W^{*}$ with degree 4 such that
$d_{4}(z)=\left(x_{2}\right)^{2} \otimes x_{1}$.

Example

Another proof by building page 2 . We start with
First, we need $\Lambda\left(x_{1}\right)$ in W^{*} such

We get the following elements and maps.
We need to take care of $\left(x_{2}\right)^{2} \otimes x_{1}$. It cannot map to anything, so we need an element to map to it. Since $\left(x_{2}\right)^{2} \otimes x_{1}$ has total degree 5 , we need
$z \in W^{*}$ with degree 4 such that $d_{4}(z)=\left(x_{2}\right)^{2} \otimes x_{1}$.
We get the following elements and maps.

Example

Another proof by building page 2 . We start with
First, we need $\Lambda\left(x_{1}\right)$ in W^{*} such
 that $d_{2}\left(x_{1}\right)=x_{2}$.
We get the following elements and maps.
We need to take care of $\left(x_{2}\right)^{2} \otimes x_{1}$. It cannot map to anything, so we need an element to map to it. Since $\left(x_{2}\right)^{2} \otimes x_{1}$ has total degree 5 , we need
$z \in W^{*}$ with degree 4 such that
$d_{4}(z)=\left(x_{2}\right)^{2} \otimes x_{1}$.
We get the following elements and maps.
Observe via computation that
$d_{4}\left(\frac{1}{2} z^{2}\right)=\left(x_{2}\right)^{2} \otimes\left(x_{1} \otimes z\right)$.

Example

Another proof by building page 2 . We start with
First, we need $\Lambda\left(x_{1}\right)$ in W^{*} such

that $d_{2}\left(x_{1}\right)=x_{2}$.
We get the following elements and maps.
We need to take care of $\left(x_{2}\right)^{2} \otimes x_{1}$. It cannot map to anything, so we need an element to map to it. Since $\left(x_{2}\right)^{2} \otimes x_{1}$ has total degree 5 , we need
$z \in W^{*}$ with degree 4 such that
$d_{4}(z)=\left(x_{2}\right)^{2} \otimes x_{1}$.
We get the following elements and maps.
Observe via computation that $d_{4}\left(\frac{1}{2} z^{2}\right)=\left(x_{2}\right)^{2} \otimes\left(x_{1} \otimes z\right)$.
The pattern continues.

