
Notation

Throughout:

• We work over a field k with vector spaces.

• Spectral sequences will be cohomologically indexed.

E••r :

· · · · · · · · ·

· · · Epqr · · ·

· · · · · · Ep+r,q−r+1
r

dr

(arrows on page r go r right and r − 1 down)

• Homology and cohomology are indicated with lowercase h.



Definitions

• A k-vector space H∗ is graded if H∗ ∼=
⊕
n∈N

Hn where Hn is a

vector space.

• A graded vector space H∗ is a graded algebra if there is a
product ϕ : Hp ⊗k H

q → Hp+q for all p and q. The product
must be associative. We write ϕ(a, b) as a · b.

• Algebras will often have a unit.

• A vector space E•• is bigraded if E•• ∼=
⊕

(p,q)∈N×N

Epq where

Epq is a vector space.

• A bigraded vector space E•• is a bigraded algebra if there is
an associative product ϕ : Emn ⊗k E

rs → Em+r,n+s for all
m,n, r, s. Write ϕ(a, b) = a · b.



Example

For an example of a bigraded algebra, take (A∗, ϕ) and (B∗, ψ)
to be graded algebras with products. Let Epq = Ap ⊗ Bq and
observe that the following gives a product on Epq:

Epq ⊗ Ers = Ap ⊗Bq ⊗Ar ⊗Bs

id⊗T (·⊗·)⊗id−−−−−−−−→ Ap ⊗Ar ⊗Bq ⊗Bs

ϕ⊗ψ−−−→ Ap+r ⊗Bq+s

= Ep+r,q+s,

where T (b⊗ a) = (−1)deg adeg ba⊗ b.



Definitions

• A graded algebra (H∗, ·) is a differential graded algebra if
there exists a degree 1 linear map d : H∗ → H∗ such that

d(a · b) = d(a) · b+ (−1)deg aa · d(b).

• Such a d is called a derivation.

• A bigraded algebra (E••, ·) is a differential bigraded algebra
if there exists a derivation

d :
⊕

p+q=n

Epq →
⊕

r+s=n+1

Ers

such that

d(a · b) = d(a) · b+ (−1)p+qa · d(b)

for all a ∈ Epq and b ∈ Ep′q′ .



Example

For an example of a differential bigraded algebra, take two dif-
ferential graded algebras (A∗, ·, dA) and (B∗, ·, dB). Let

E•• = A∗ ⊗B∗

and let the differential dE on E•• be

dE(α⊗ β) = dA(α)⊗ β + (−1)degαα⊗ dB(β).

Then one can check that

dE(α⊗ β · γ ⊗ δ) = dE(α⊗ β) · γ ⊗ δ + (−1)p+qα⊗ β · dE(γ ⊗ δ)

for α⊗ β ∈ Epq, γ ⊗ δ ∈ Ep′q′ .



Definitions

• A spectral sequence {E••r , dr} is a spectral sequence of algebras if for
each r, (E••r , ϕr, dr) is a differential bigraded algebra and the product ϕr+1

on E••r+1 is induced by the product ϕr of E••r on homology. In other words,
ϕr+1 is the composition

E••r+1 ⊗ E••r+1 = h(E••r )⊗ h(E••r ) ∼= h(E••r ⊗ E••r )
h(ϕr)−−−−→ h(E••r ) = E••r+1.

• Given a filtration Fil∗ of a graded algebra (H∗, ϕ), the filtration is stable
with respect to ϕ if

ϕ(FilrH∗ ⊗ FilsH∗) ⊆ Filr+sH∗.

• A spectral sequence of algebras {E••r , dr} converges to H∗ as a graded
algebra if there is a stable filtration on H∗ for which E••∞ is isomorphic as a
bigraded algebra to the associated bigraded algebra

Grp(H∗) = FilpH∗�Filp+1H∗.



Example

Suppose E••2 is given as an algebra by

E••2
∼= Q[x, y, z]�(x2 = y4 = z2 = 0)

where deg x = (7, 1), deg y = (3, 0), deg z = (0, 2), d2(x) = y3,
and d3(z) = y.

We will see that the spectral sequence collapses at E4 and xy
survives to E∞ even though x and y do not.
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Example

First we draw page 2 (focusing only on generators of the algebra)

• • • • • • • • • • • • • •

• • • • • • • zx • • zxy • • zxy2

z • • zy • • zy2 • • zy3 • • • •

• • • • • • • x • • xy • • xy2

1 • • y • • y2 • • y3 • • • •

Since d2 above takes basis elements to basis elements, it is an
isomorphism of vector spaces. Thus homology vanishes there,
and page E3 is as follows:
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Example

Here is page 3:

• • • • • • • • • • • • • •

• • • • • • • • • • zxy • • zxy2

z • • zy • • zy2 • • • • • • •
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• • • y • • y2 • • • • • • •

Once again, d3 takes basis elements to basis elements, hence is
an isomorphism. We can now draw page E4:
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Example

Here is page 4:

• • • • • • • • • • • • • •

• • • • • • • • • • • • • •

• • • • • • zy2 • • • • • • •

• • • • • • • • • • xy • • •

• • • • • • • • • • • • • •

There are no nonzero differentials at this stage. Thus the spectral
sequence has abutted at page 4 to the infinite page. We can
observe here that indeed, xy survived, but x and y did not.
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Definitions

• If (Γ∗, ϕ) is a graded algebra, then a graded vector space H∗ is a Γ∗-module if the
module scalar multiplication

m : Γ
∗ ⊗H

∗ → H
∗

respects the multiplication of Γ∗; i.e.,

Γ∗ ⊗ Γ∗ ⊗H∗ Γ∗ ⊗H∗

Γ∗ ⊗H∗ H∗

ϕ⊗id

id⊗m

m

m

commutes.

• If Γ∗ is a graded algebra and E•• is a bigraded vector space, then Γ∗ acts vertically
on E•• if for all n ≥ 0, En• is a Γ∗-module. In other words, there is a scalar
multiplication map

mn : Γ
∗ ⊗ E

n• → E
n•

for each n. It is called vertical since

mn : Γ
s ⊗ E

nt → E
n,s+t

.



Example

For an example of a Γ∗ acting vertically on E••, consider a filtered
graded vector space/Γ∗-module, call it H∗. Suppose further that
the Γ∗-action is filtration preserving ; i.e.,

Γ∗ ⊗ FilpH∗ → FilpH∗.

One can check that Γ∗ acts vertically on the associated graded
vector space

Grp(H∗) = FilpH∗�Filp+1H∗.



Definitions

• A graded algebra Γ∗ acts on a spectral sequence
{E••r , dr} if
(1) Γ∗ acts on E••r for each r,
(2) dr is Γ∗-linear for each r, and
(3) the Γ∗-action on E••r+1 is induced through homology
from the action of Γ∗ on E••r .

• A spectral sequence {E••r , dr} converges to H∗ as a
Γ∗-module if
(1) E••r ⇒ H∗,
(2) Γ∗ acts on H∗, and
(3) the filtration Fil∗ on H∗ induces a Γ∗-action on

Grp(H∗) = FilpH∗�Filp+1H∗ that is isomorphic to the
Γ∗-action on E••∞ .



Example

Suppose Γ∗ = Q[a, b] with deg a = 2, deg b = 5. Suppose there is
a spectral sequence with E••2 such that

• E••2 is a Γ∗-module,

• its Γ∗-module generators are {x, y, z, w} with deg x = (8, 4),
deg y = (6, 0), deg z = (0, 4), degw = (10, 1), and

• except for that bx = 0, Γ∗ acts freely on this basis.

We will see that the spectral sequence collapses at E2.
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We will see that the spectral sequence collapses at E2.



Example

Before drawing page 2, note that it is enough to show that dr = 0
on basis elements for all r > 2, since dr commute with the Γ∗-
action. We now draw page 2:



Example

bz • • • • • ba2y • • • a4w •

a2z • • • • • a4y • a2x • baw •

• • • • • • bay • • • a3w •

az • • • • • a3y • ax • bw •

• • • • • • by • • • a2w •

z • • • • • a2y • x • • •

• • • • • • • • • • aw •

• • • • • • ay • • • • •

• • • • • • • • • • w •

• • • • • • y • • • • •

The generator z survives to E∞ since deg z = (0, 4) and dr(z) must have total degree 5, but
E••2 is trivial there.
The generator y survives to E∞ since no Γ∗-multiple of z hits y with any dr , and y cannot
bound any other element.
This argument doesn’t work for w, since d4(a2y) = w. But differentials commute with the

action, so d4(a2y) = a2d4(y) = 0. Thus, w survives, since it cannot be hit by any Γ∗-multiple
of x or y.
Finally, d2(x) = aw. We reach a contradiction by realizing 0 = d2(0) = d2(bx) = bd2(x) =
baw 6= 0, so d2(x) = 0. dr(x) = 0 for r > 2 since arrows will go down and right and increase
total degree by 1, missing any other nonzero terms. Hence x survives to E∞ too.
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Definition

• A graded algebra (H∗, ·) is graded commutative
(skew-commutative) if

x · y = (−1)pqy · x

for x ∈ Hp and y ∈ Hq.



Example

Let k = Q and (A∗, ·), (B∗, ·) be free graded skew-commutative
algebras. We show that there are only two possibilities for A∗

and B∗. If x2n generates A∗ and deg x2n = 2n, then observe

x2n
k · x2n

` = (−1)k·2n·`·2nx2n
` · x2n

k = x2n
` · x2n

k.

Hence we have honest commutativity, and A∗ ∼= Q[x2n], the poly-
nomial algebra on one generator of dimension 2n.
On the other hand, if x2n+1 generates B∗ with deg x2n+1 = 2n+1,
then

x2n+1 · x2n+1 = (−1)(2n+1)(2n+1)x2n+1 · x2n+1 = −x2n+1 · x2n+1,

we have (x2n+1)2 = (x2n+1)≥2 = 0. Call B∗ = Λ(x2n+1), the
exterior algebra on one generator of dimension 2n+ 1.



Example

Suppose there is a spectral sequence of algebras {E••r , dr} such
that E••2

∼= V ∗⊗W ∗ as bigraded algebras, where V ∗ and W ∗ are
graded algebras, and E••2 ⇒ H∗ as a graded algebra.
Suppose further that H∗ ∼= Q (where Q as a graded algebra is
H0 = Q, H>0 = 0).
We claim if V ∗ ∼= Q[x2n], then W ∗ ∼= Λ(x2n−1) (and vice versa,
if V ∗ ∼= Λ(x2n+1), then W ∗ ∼= Q[x2n]).



Example

Let V ∗ ∼= Q[x2n]. We show W ∗ ∼= Λ(x2n+1).
Recall that dr(v ⊗ w) satisfies the Leibniz rule; i.e.,

dr(v ⊗ w) = dr(v)⊗ w + (−1)deg vv ⊗ dr(w).

Also note that dr|V ∗ = 0 and dr|W ∗ has image in V ∗ ⊗W ∗. If
dr(1⊗ w) =

∑
vj ⊗ wj , then observe that via the Leibniz rule,

dr(1⊗ wk) = k
(∑

vj ⊗ (wjw
k−1)

)
.



Example
We will build a page of the spectral sequence using the fact that we know our spectral sequence
converges to Q to show that W∗ ∼= Λ(x2n+1).

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

1 • · · · • x2n • · · · • x2n
2 •

Since x2n does not survive to E∞, there exists x2n−1 ∈ W∗ such that d2n(1⊗x2n−1) = x2n⊗1.

The existence of x2n−1 generates new elements on page 2: (x2n)` ⊗ x2n−1.
Since d2n−1 is a differential, hence derivation,

d2n−1((x2n)
` ⊗ x2n−1) = d2n−1((x2n)

m
)⊗ x2n−1 + (x2n)

m ⊗ d2n−1(x2n−1)

= md2n−1(x2n)(x2n)
m−1

)⊗ x2n−1 + (x2n)
m+1 ⊗ 1

= (x2n)
m+1 ⊗ 1.

Hence the arrows above.
Finally, observe that if W∗ had any other elements, they would give rise to classes that would
persist to E∞, contradicting that H∗ = Q. Hence W∗ ∼= Λ(x2n−1), as desired.
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Example

Suppose there is a spectral sequence of algebras {E••r , dr} such
that E••2

∼= V ∗⊗W ∗ as bigraded algebras, where V ∗ and W ∗ are
graded algebras, and E••2 ⇒ H∗ as a graded algebra.
Suppose further that H∗ ∼= Q.

We claim if V ∗ ∼= Q[x2]�(x2)3, then W ∗ ∼= Λ(x1)⊗Q[z].
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Another proof by building page 2. We start with
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First, we need Λ(x1) in W ∗ such
that d2(x1) = x2.
We get the following elements
and maps.
We need to take care of
(x2)2 ⊗ x1. It cannot map to
anything, so we need an element
to map to it. Since (x2)2 ⊗ x1

has total degree 5, we need
z ∈W ∗ with degree 4 such that
d4(z) = (x2)2 ⊗ x1.
We get the following elements
and maps.
Observe via computation that
d4

(
1
2
z2

)
= (x2)2 ⊗ (x1 ⊗ z).

The pattern continues.
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